Thatrsient

03339967333

30° straightbranch pieces, 2 and 3 m .

Diameter for 2 mm : ø100-ø1000 mm Diameter for 3 mm : ø150-ø1000 mm.

Straight branch pieces are welded and made of 2 and 3 mm sheet metal (s). Straight branch pieces with $\mathrm{A}=\mathrm{C} \leq 350 \mathrm{~mm}$ are supplied for assembly with pull rings [f.b] and for A $=C \geq 400 \mathrm{~mm}$ with flanges [m.fl].
When assembled with loose flanges, [f.b.m.fl], and flanges [m.fl] L1 is extended by $2 \times 50 \mathrm{~mm}$.

State A-, B- and C dimensions when ordering. Options are limited by $\mathrm{A}=\mathrm{C}$, and $\mathrm{A} \geq \mathrm{B}$.

The branch determines the length of L1. Branch pieces are always straight with the branch centrally located.

L1, L2 and L3 can be calculated using the stated formulas.

For double branch pieces, the highest value of dim. B determines L1 on the common branch. L2 and L3 can then be calculated for both branches. Normally, the branches are opposite each other.

Calculating L2 and L3:

L1 = see table
$L 2=\frac{L 1}{2}-\left(\frac{A}{2 \times \operatorname{tg} 30^{\circ}}\right)$
$L 3=\frac{L 1-L 2}{\cos 30^{\circ}}-\left(\frac{B}{2} \times \operatorname{tg} 30^{\circ}\right)$

> Example: $\begin{aligned} & A=B=C=450 \\ & L 1=1250 \mathrm{~mm} \\ & L 2=\frac{1250}{2}-\left(\frac{450}{\operatorname{tg} 30^{\circ}}\right)=625-389,71 \\ & L 2=235,29 \sim 235 \mathrm{~mm} \\ & L 3=\frac{1250-235}{\cos 30^{\circ}}-\left(\frac{450}{2} \times \operatorname{tg} 30^{\circ}\right)=1172,06-129,92 \\ & L 3=1042,14 \sim 1042 \mathrm{~mm}\end{aligned}$

